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ABSTRACT

Formulas and tables are developed for compressing

the power series representation of a function to obtain

minimal order approximating polynomials maintaining

specified accuracy throughout an assigned range of

arguments. Coefficients for polynomials approximat-
ing the function 1-ev are derived and scaled for use in

a fixed point computer.
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I. INTRODUCTION

In certain launch vehicle guidance equations (Ref. 1) there occurs a

function of the form

u(v) 1-ev (1)

Values of the argument lie within a range -0.3 < v < 2. 1. It is required that

any approximation used uhall yield u = 0 when v = 0. The accuracy desired

is such that the least significant bit of u should be 2" 18.

At present, u(v) is approximated by an eighth order polynomial derived

by truncating the Maclaurin series for the exponential.

8 i
u*(v) -E (2)

i=l

The approximation (2), however, provides the desired accuracy only when

v < 1. At the upper end of the range of arguments, the significance deteri-
orates to about 2-8

This report gives the derivation of coefficients for two new approximat-

ing polynomials. One of these is, and the other may be, sufficiently accurate

over the entire pertinent range of arguments. Section II describes a general

method by which a long power series can be compressed to yie-ld the approxi-

mating polynomial of minimum order to maintain specified accuracy throughout

a given range of arguments. In Section III, the method is applied to the function

defined in Equation (1). Section IV introduces considerations of scaling, neces-

sary to retain significance while avoiding overflows in a fixed point computer,

and convenient to enable bit-by-bit simulation of the computer operations for

purposes of checking and error analysis. In Section V, coefficients are evalu-

ated for both seventh and eighth order polynomials to approximate function (1)

over a limited range of arguments. The errors of these approximations are

compared in Section VI with those of the currently used approximation (2). In

Section VII it is shown that the approximating polynomials derived in this report

are preferable to Equation (2) for numerical differentiation of Equation (1).
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II. COMPRESSION OF POWER SERIES

In Reference 2 it is shown that although a function may be expressed by a

convergent infinite power series, there are other expressions more suitable for

approximating the function within specified tolerance for a limited range of the

argument. Of particular importance are the Chebyshev polynomials Ti(x) and

T*(x). The former are useful when -I <x < 1, and the latter when 0 < x < 1.

Both have the property that, within the range of applicability, their maxima

are +1 and their minima are -1. A series of Chebyshev polynomials converges

more rapidly than any other series representing a function when arguments are

restricted to the appropriate range.

In this report, the polynomials T*(x) are used, with 0 < x < 1. The

normalization of the original indepen'ient variable to this range is discussed

in Section III.

Tý(x) = ttiix (3)

j=O

where

t

t iO 1 -)i [i > 11 (4)

t.. = (.)i+j 2 Zj-l i (i j- I ri >j >1Sj" ( 'I-j )--

In Reference 2, the definition of T*(x) is given special attention. For present

purposes, however, the value of 1/2 is appropriate. Table II-I lists t.. for
iJ

0 < j < i < 7.

-3-



It is further shown in Reference 2 that any integral power of x can be

expressed as a finite series of Chebyshev polynomials.

n

_ Z'(Zn" l) hln) Tx (5)

i=O

where

h.(n) =( ) 0 < i < n] (6)

Table 11-2 lists hi(n) for 0<i<13 and 7< n< 13.

If m, is chosen < n, then substituting (3) into (5) for 0 < i < rn -I gives

x = 2 (Zn-)[gj (m, n) xj + hi(n) Tý(x) (7)

where

gj(m, (n) h tij [0 < j < m - I < n] (8)

i=j

gj(7,n) and gj(8,n) are listed in Tables 11-3 and H1-4 for n < 13.

Equation (7) shows how any power n > mn of x can be represented by a

polynomial in x of order m - 1 and a linear combination of T:•(x) with
1
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rnm< i < n. The coefficients gj(m,n) and h.(n) are all integers. It should be
observed that

gjl(m, n) + iLn) = (9)

i=rn

If 0 < x < 1, then the series

~cixi

izO

can be expressed as the sum of a polynomial in x, of some order m - 1, and

a residual series of Chebyshev polynomials of order > mn.

C xi Zdmixi + tejT*x) (10)

From (7),

00 M-1 0rrn-I I n
i Ecix i + (2n-1)c[ c i(m, n)xi + hi(n)TV(x)] (11)

i=0 i=O n=m i=o i=m

Equating coefficients of xi and T*'(x) in (10) and (11) gives

00

d= c + -z(2n-l)cgi(mnn) 0_< i < m - I] (12)

n=m
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e•i = • 2 "(Zn')cnhi(n) [m< i < n] (13)

n=i

Equation (13) provides a basis for selecting the order, m - I, of an approxi-

mating polynomial whose error shall not exceed a specified magnitude when

0 < x < 1. Since, in this range, VT'(x) I < 1, the error of approximation is

limited by

Iei15 Em= -Z(2n-nl) 1cn I hi(n) (14)

i=m n-m i=m

By trial and error, a minimal m can be found such that Em, computed by

(14), is sufficiently small. With m thus determined, the coefficients of the

approximating polynomial can be found from (12).

In practice, the infinite sum in (12) can be replaced by a finite sum. If

the power series

0c

i=O

converges when 0 < x< 1, then for some r the terms beyond crxr can be

neglected. Equation (10) then becomes

iO M-I r c0

xcix' ;;duixi + IeiT!(x) + Ecxi (15)

i=0- i=m i=r+l
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The error of approximatiot. is limited, for 0 < x < 1, by

r n 0o
E mr E= -2-)i I ýhý(n + Y 'cnI 16

n=m I=M X

The m coefficients of the approximating polynomial are then

d'mi = c + r"(Zn-l)n cgi(mn) [0 < i < m- 1) (17)

-7.
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III. APPLICATION TO u(v) = I - v

In order to apply the method developed above to the function defined in

equation (1), it is first necessary to transform the variable to one lying in the

range between 0 and 1. If b < v < a + b, then

v-b (8x =-v- b 8
a

Since it is required that the polynomial approximation u m(v) vanish when

v = 0, and since it is further desirable that the approximation be most accurate

in the neighborhood of v = 0, the process of Section II is applied to the function

u(v) I - e(ax+b) (ax + b)n [
-v•= -(ax+b) b (n+ I)' = - --x [0<x< (19)

Expanding (ax + b)n by the binomial theorem, it follows that

00
i + j + .1

j=O

A value of r is easily chosen such that

00

v jIci
i=r+l

can be neglected for b < v < a + b. Application of equation (16) leads to a

selection of m which keeps vE within tolerance. m is the number ofmr
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Im
coefficients in the approximating polynomial. Then, using (17) to determine
d' .

mil

mn-I. rn-I

u(v)d - b\ (a -v k . (21)
m ~i=O M

From

i

j=O

It follows that

m-1

kmj: (-b) 3 E() ( d'J [0 < j < m ] (22)

i=j

Note that if b = 0, then c. a i/(i + 1)! and k a-Jd

mj inj

It must be emphasized that the accuracy of approximating u(v) by urm(v)

deteriorates very rapidly when v exceeds the range whose limits have been

used in determining the coefficients kmj.
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IV. COMPUTER SCALING

The polynomials um (v) are to be evaluated in a fractional binary

computer with word length of 23 magnitude bits and a sign bit. A rounded

multiply operation is available.

In programming this computer, it is customary to assign a scale

factor s(N) to a number N such that INI < 2s. In a word representing N,

the value of the least significant bit is 223. Numbers to be added must be

scaled alike. The scale of a product is the sum of the scales of the factors.

In order to realize the advantage of rounded multiplication, there

should be no shifting of intermediate products in a program for polynomial

evaluation. It follows from (21) and the arithmetic of scale factors that

s(k m) = s(u m) - (j + l)s(v) (23)

Maximum precision and the avoidance of overflow in intermediate

computations require, in the present application, that

s(v)- 2

sc(um 5 (Z4)

s (k mj 3 -Zj

The bit configuration in a computer word for a number N with a scale

factor s is the same as that for the number 2ss N with a scale factor s'.

Instead of computing kmj from (22) and assigning individual scale factors

from (24), it is preferable to transform the polynomial coefficients to integers

which can all be scaled with s = 23. The advantage lies in the greater

convenience with which the computer operations, including round-off, can be

simulated bit by bit for purposes of error analysis and program checking.

-15-



Let

Kmj = 220+ j, s (K mj) = 23

Urm = um , S(Um) = 23 (25)

w= 2"2v, s(w) = 0

Then

M-1

Ur(w) = - K mj wj (26)

j=0

where Um with a = 23 is the same configuration of digits as u m with s =5.

-16-6



V. EVALUATION OF COEFFICIENTS

The range -0. 3 < v < Z. 1 includes values beyond all those to be

expected in the current application. Therefore, a = 2.4; b = -0.3. With

these parameters, the ci are computed by equation (20) and listed in

Table V-i for 0 <.51 17.

Accuracy to the order of 2"18 is desired in the approximation to u(v).

Since

2.1 ci < 2 2 1

i=14

while

2. Ea ci is nearly 219

i=13

the value of r = 13 is used for termination of the sums in equations (16) and

(17).

From (16),

2.1 E7, 13 = 7 1 8 <217

2.1 E 78.10"8 < 2-20
2.1 E8, 13 =

It is evident that m = 8 keeps the error well below the specified tolerance,

while m = 7 may be acceptable if slightly larger errors can be tolerated

whenv > 1. The difference between r + 1 = 14 and m = 7 or 8 measures

the benefit gained by the series compression method of Section II in

minimizing the order of an approximating polynomial satisfactory throughout

the range of arguments.
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Values of dni computed by (17), with m = 7 and m = 8, are listed

in Table V-2.

From (25) and (22), with a = 2.4, b = -0.3,

M-1

Kmj 2 (0. 3 )i" j 2 31(j di (0.5j .m-11 (27)

i=j

Values of Kmj computed by (27), with m = 7 and m = 8 are listed in

Table V-3.

Table V-i. c. from Equation (20) with a = 2.4, b = -0.3

i C. C.
1 1

0 .86393 92644 9 .00055 44093

1 .98496 83497 10 .00012 06818

2 .76789 18791 11 .00002 40891

3 .45365 10976 12 .00000 44398

4 .21551 84202 13 .00000 07600

5 .08557 59883 14 .00000 01214

6 .02917 93574 15 .00000 00182

7 .00871 64991 16 .00000 00026

8 .00231 64848 17 .00000 00003

-18-



Table V-2. dý,1 from Equation (17) with r = 13, m = 7 and 8

ii

i & d~li

0 .86393 90612 .86394 22776

1 .98499 39577 .98467 87486

2 .76736 44347 .77240 77891

3 .45776 39967 .42750 38699

4 .19992 35730 .28638 10778

5 .11713 94957 .00966 48447

6 - .00501 19813 .08720 93573

7 .02634 89539

C

Table V-3. K j from Equation (27) with m = 7 and 8

j K 8j K 7j

0 1,048,576 !,048,577

1 2,097,148 2,097,259

2 2,796,363 2,795,331

3 2,796,485 2,779,653

4 2,214,973 2,433,572

5 1,645,497 751,671

6 405,518 1,959,997

7 986,971

-19-
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VI. ERROR ANALYSIS

Calculations of the seventh order polynomial U7. equation (26), were

made with K 7j from Table V-3. All multiplications were rounded, to simulate

computer operation. The differences between these results and zl8 (l-ev) are

plotted in Figure VI-1. When -0. 3& v < 1, the errors lie virtually within the

shaded region of round-off error, * 1/2 218. When 1 < v < 2. 1, the

oscillatory error function never exceeds 2. 5 2" 18 in magnitude.

In contrast, the eighth order truncated Maclaurin series approximation

departs rapidly from u(v) when v > 1. The magnitude of its error reaches

2-16 when v = 1.2, 2-13 when v = 1.5, and 2' 1 0 whenv= 1.9.

Errors of the eighth order approximating polynomial U8 are wholly

obscured by round-off, and therefore are not shown in Figure VI-l.

The warning is repeated that approximating polynomials derived by

the methods of this report cannot be expected to remain valid outside the

range of arguments for which they are specified.
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VII. NUMERICAL DIFFERENTIATION

Reference I recommends that, since du/dt is used in the application,

u should be approximated by truncation of the exponential series. However,

the polynomials derived in this report improve the approximation to the

derivative as well as the approximation to the function itself.

If an approximation to u(v) is denoted by u*(v) and the error by e (v), then

u(vi) = u*(vi) + 4 (vi) (28)

u(v2 ) - u(vl) = u*(v2 ) - u*(vl) + [.(v 2 ) - C(vl)] (29)

In words, if the differentiation is to be approximated by differencing,

then the error of a difference is given by the difference of the errors.

It is evident from Figure VI-I that in the region 1 < v < 2. 1, the slope

of the error curve for the truncated Maclaurin series is significantly greater

in magnitude than the slope of the error curve for u7 (v). Therefore, even

the seventh order polynomial derived here gives a better approximation for

the derivative than does the series truncated to eighth order.
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